Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Alzheimers Dement ; 20(5): 3525-3542, 2024 May.
Article in Italian | MEDLINE | ID: mdl-38623902

ABSTRACT

INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. HIGHLIGHTS: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.


Subject(s)
C9orf72 Protein , Cerebrovascular Circulation , Frontotemporal Dementia , Magnetic Resonance Imaging , tau Proteins , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/diagnostic imaging , Female , Male , Middle Aged , Longitudinal Studies , Cerebrovascular Circulation/physiology , Cerebrovascular Circulation/genetics , C9orf72 Protein/genetics , tau Proteins/genetics , Gray Matter/diagnostic imaging , Gray Matter/pathology , Progranulins/genetics , Biomarkers , Disease Progression , Brain/diagnostic imaging , Heterozygote , Mutation , Aged , Spin Labels , Adult
2.
Sci Rep ; 14(1): 9082, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643273

ABSTRACT

Studying the oculomotor system provides a unique window to assess brain health and function in various clinical populations. Although the use of detailed oculomotor parameters in clinical research has been limited due to the scalability of the required equipment, the development of novel tablet-based technologies has created opportunities for fast, easy, cost-effective, and reliable eye tracking. Oculomotor measures captured via a mobile tablet-based technology have previously been shown to reliably discriminate between Parkinson's Disease (PD) patients and healthy controls. Here we further investigate the use of oculomotor measures from tablet-based eye-tracking to inform on various cognitive abilities and disease severity in PD patients. When combined using partial least square regression, the extracted oculomotor parameters can explain up to 71% of the variance in cognitive test scores (e.g. Trail Making Test). Moreover, using a receiver operating characteristics (ROC) analysis we show that eye-tracking parameters can be used in a support vector classifier to discriminate between individuals with mild PD from those with moderate PD (based on UPDRS cut-off scores) with an accuracy of 90%. Taken together, our findings highlight the potential usefulness of mobile tablet-based technology to rapidly scale eye-tracking use and usefulness in both research and clinical settings by informing on disease stage and cognitive outcomes.


Subject(s)
Parkinson Disease , Humans , Eye Movements , Cognition , Movement , Patient Acuity
3.
Alzheimers Dement (Amst) ; 16(2): e12571, 2024.
Article in English | MEDLINE | ID: mdl-38623386

ABSTRACT

INTRODUCTION: We aimed to expand the range of the frontotemporal dementia (FTD) phenotypes assessed by the Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains (CDR plus NACC FTLD). METHODS: Neuropsychiatric and motor domains were added to the standard CDR plus NACC FTLD generating a new CDR plus NACC FTLD-NM scale. This was assessed in 522 mutation carriers and 310 mutation-negative controls from the Genetic Frontotemporal dementia Initiative (GENFI). RESULTS: The new scale led to higher global severity scores than the CDR plus NACC FTLD: 1.4% of participants were now considered prodromal rather than asymptomatic, while 1.3% were now considered symptomatic rather than asymptomatic or prodromal. No participants with a clinical diagnosis of an FTD spectrum disorder were classified as asymptomatic using the new scales. DISCUSSION: Adding new domains to the CDR plus NACC FTLD leads to a scale that encompasses the wider phenotypic spectrum of FTD with further work needed to validate its use more widely. Highlights: The new Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains neuropsychiatric and motor (CDR plus NACC FTLD-NM) rating scale was significantly positively correlated with the original CDR plus NACC FTLD and negatively correlated with the FTD Rating Scale (FRS).No participants with a clinical diagnosis in the frontotemporal dementia spectrum were classified as asymptomatic with the new CDR plus NACC FTLD-NM rating scale.Individuals had higher global severity scores with the addition of the neuropsychiatric and motor domains.A receiver operating characteristic analysis of symptomatic diagnosis showed nominally higher areas under the curve for the new scales.

4.
Article in English | MEDLINE | ID: mdl-38609836

ABSTRACT

BACKGROUND: Symptoms of behavioral variant frontotemporal dementia (bvFTD) overlap with primary psychiatric disorders (PPD) making diagnosis challenging. Serum neurofilament light (sNfL) is a candidate biomarker to distinguish bvFTD from PPD, but large-scale studies in PPD are lacking. OBJECTIVE: Determine factors that influence sNfL from a large database of PPD patients, and test its diagnostic accuracy. DESIGN, SETTINGS, SUBJECTS, MEASUREMENTS: Clinical data of people aged 40-81 were obtained from healthy subjects (n = 69), and patients with PPD (n = 848) or bvFTD (n = 82). sNfL was measured using Simoa technology on an HD-X instrument. Data were analyzed using general linear models, and Receiver Operating Characteristic (ROC) curve analyses to determine global and age-specific sNfL cutoffs to distinguish bvFTD from PPD, using the Youden Index. RESULTS: sNfL increased with age, while sex, BMI and diabetes status were modestly associated with sNfL. sNfL was slightly higher in PPD than healthy subjects (14.1 versus 11.7 pg/mL), when controlling for covariates. sNfL was markedly lower in PPD than bvFTD (14.1 versus 44.1 pg/mL). sNfL could differentiate PPD from bvFTD with an AUC = 0.868, but the effect was driven by the younger subjects between age 40-60 years at a cutoff of 16.0 pg/mL. No valid cutoff was detected over age 60, however, values of sNfL above 38.5 pg/mL, or below 13.9 pg/mL, provided 90% diagnostic certainty of bvFTD or PPD, respectively. CONCLUSION: PPD have mildly elevated sNfL compared to healthy subjects but much lower than bvFTD. Results support the use of sNfL as a biomarker to differentiate PPD from bvFTD at age 60 or below, but accuracy decreases in older ages.

5.
Brain Commun ; 6(2): fcae069, 2024.
Article in English | MEDLINE | ID: mdl-38510209

ABSTRACT

The volume of the lateral ventricles is a reliable and sensitive indicator of brain atrophy and disease progression in behavioural variant frontotemporal dementia. In this study, we validate our previously developed automated tool using ventricular features (known as VentRa) for the classification of behavioural variant frontotemporal dementia versus a mixed cohort of neurodegenerative, vascular and psychiatric disorders from a clinically representative independent dataset. Lateral ventricles were segmented for 1110 subjects-14 behavioural variant frontotemporal dementia, 30 other frontotemporal dementia, 70 Lewy body disease, 898 Alzheimer's disease, 62 vascular brain injury and 36 primary psychiatric disorder from the publicly accessible National Alzheimer's Coordinating Center dataset to assess the performance of VentRa. Using ventricular features to discriminate behavioural variant frontotemporal dementia subjects from primary psychiatric disorders, VentRa achieved an accuracy rate of 84%, a sensitivity rate of 71% and a specificity rate of 89%. VentRa was able to identify behavioural variant frontotemporal dementia from a mixed age-matched cohort (i.e. other frontotemporal dementia, Lewy body disease, Alzheimer's disease, vascular brain injury and primary psychiatric disorders) and to correctly classify other disorders as 'not compatible with behavioral variant frontotemporal dementia' with a specificity rate of 83%. The specificity rates against each of the other individual cohorts were 80% for other frontotemporal dementia, 83% for Lewy body disease, 83% for Alzheimer's disease, 84% for vascular brain injury and 89% for primary psychiatric disorders. VentRa is a robust and generalizable tool with potential usefulness for improving the diagnostic certainty of behavioural variant frontotemporal dementia, particularly for the differential diagnosis with primary psychiatric disorders.

6.
Alzheimers Res Ther ; 16(1): 10, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38216961

ABSTRACT

BACKGROUND: The Genetic Frontotemporal Initiative Staging Group has proposed clinical criteria for the diagnosis of prodromal frontotemporal dementia (FTD), termed mild cognitive and/or behavioral and/or motor impairment (MCBMI). The objective of the study was to validate the proposed research criteria for MCBMI-FTD in a cohort of genetically confirmed FTD cases against healthy controls. METHODS: A total of 398 participants were enrolled, 117 of whom were carriers of an FTD pathogenic variant with mild clinical symptoms, while 281 were non-carrier family members (healthy controls (HC)). A subgroup of patients underwent blood neurofilament light (NfL) levels and anterior cingulate atrophy assessment. RESULTS: The core clinical criteria correctly classified MCBMI vs HC with an AUC of 0.79 (p < 0.001), while the addition of either blood NfL or anterior cingulate atrophy significantly increased the AUC to 0.84 and 0.82, respectively (p < 0.001). The addition of both markers further increased the AUC to 0.90 (p < 0.001). CONCLUSIONS: The proposed MCBMI criteria showed very good classification accuracy for identifying the prodromal stage of FTD.


Subject(s)
Frontotemporal Dementia , Humans , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Neurofilament Proteins , Biomarkers , Atrophy
7.
Article in English | MEDLINE | ID: mdl-38253362

ABSTRACT

BACKGROUND: Blood neurofilament light chain (NfL) is increasingly considered as a key trial biomarker in genetic frontotemporal dementia (gFTD). We aimed to facilitate the use of NfL in gFTD multicentre trials by testing its (1) reliability across labs; (2) reliability to stratify gFTD disease stages; (3) comparability between blood matrices and (4) stability across recruiting sites. METHODS: Comparative analysis of blood NfL levels in a large gFTD cohort (GENFI) for (1)-(4), with n=344 samples (n=148 presymptomatic, n=11 converter, n=46 symptomatic subjects, with mutations in C9orf72, GRN or MAPT; and n=139 within-family controls), each measured in three different international labs by Simoa HD-1 analyzer. RESULTS: NfL revealed an excellent consistency (intraclass correlation coefficient (ICC) 0.964) and high reliability across the three labs (maximal bias (pg/mL) in Bland-Altman analysis: 1.12±1.20). High concordance of NfL across laboratories was moreover reflected by high areas under the curve for discriminating conversion stage against the (non-converting) presymptomatic stage across all three labs. Serum and plasma NfL were largely comparable (ICC 0.967). The robustness of NfL across 13 recruiting sites was demonstrated by a linear mixed effect model. CONCLUSIONS: Our results underline the suitability of blood NfL in gFTD multicentre trials, including cross-lab reliable stratification of the highly trial-relevant conversion stage, matrix comparability and cross-site robustness.

9.
Am J Geriatr Psychiatry ; 32(1): 98-113, 2024 01.
Article in English | MEDLINE | ID: mdl-37741764

ABSTRACT

Neuropsychiatric symptoms (NPS) are common manifestations of neurodegenerative disorders and are often early signs of those diseases. Among those neurodegenerative diseases, TDP-43 proteinopathies are an increasingly recognized cause of early neuropsychiatric manifestations. TDP-43-related diseases include frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and Limbic-Predominant Age-Related TDP-43 Encephalopathy (LATE). The majority of TDP-43-related diseases are sporadic, but a significant proportion is hereditary, with progranulin (GRN) mutations and C9orf72 repeat expansions as the most common genetic etiologies. Studies reveal that NPS can be the initial manifestation of those diseases or can complicate disease course, but there is a lack of awareness among clinicians about TDP-43-related diseases, which leads to common diagnostic mistakes or delays. There is also emerging evidence that TDP-43 accumulations could play a role in late-onset primary psychiatric disorders. In the absence of robust biomarkers for TDP-43, the diagnosis remains primarily based on clinical assessment and neuroimaging. Given the association with psychiatric symptoms, clinical psychiatrists have a key role in the early identification of patients with TDP-43-related diseases. This narrative review provides a comprehensive overview of the pathobiology of TDP-43, resulting clinical presentations, and associated neuropsychiatric manifestations to help guide clinical practice.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Neurodegenerative Diseases , Psychiatry , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/genetics
10.
J Alzheimers Dis ; 97(2): 963-973, 2024.
Article in English | MEDLINE | ID: mdl-38143357

ABSTRACT

BACKGROUND: The behavioral variant of frontotemporal dementia (bvFTD) is very heterogeneous in pathology, genetics, and disease course. Unlike Alzheimer's disease, reliable biomarkers are lacking and sporadic bvFTD is often misdiagnosed as a primary psychiatric disorder (PPD) due to overlapping clinical features. Current efforts to characterize and improve diagnostics are centered on the minority of genetic cases. OBJECTIVE: The multi-center study DIPPA-FTD aims to develop diagnostic and prognostic algorithms to help distinguish sporadic bvFTD from late-onset PPD in its earliest stages. METHODS: The prospective DIPPA-FTD study recruits participants with late-life behavioral changes, suspect for bvFTD or late-onset PPD diagnosis with a negative family history for FTD and/or amyotrophic lateral sclerosis. Subjects are invited to participate after diagnostic screening at participating memory clinics or recruited by referrals from psychiatric departments. At baseline visit, participants undergo neurological and psychiatric examination, questionnaires, neuropsychological tests, and brain imaging. Blood is obtained to investigate biomarkers. Patients are informed about brain donation programs. Follow-up takes place 10-14 months after baseline visit where all examinations are repeated. Results from the DIPPA-FTD study will be integrated in a data-driven approach to develop diagnostic and prognostic models. CONCLUSIONS: DIPPA-FTD will make an important contribution to early sporadic bvFTD identification. By recruiting subjects with ambiguous or prodromal diagnoses, our research strategy will allow the characterization of early disease stages that are not covered in current sporadic FTD research. Results will hopefully increase the ability to diagnose sporadic bvFTD in the early stage and predict progression rate, which is pivotal for patient stratification and trial design.


Subject(s)
Acetamides , Frontotemporal Dementia , Isothiocyanates , Humans , Frontotemporal Dementia/genetics , Prospective Studies , Prognosis , Neuropsychological Tests , Biomarkers
11.
Mol Neurodegener ; 18(1): 85, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968725

ABSTRACT

BACKGROUND: Plasma biomarkers reflecting the pathology of frontotemporal dementia would add significant value to clinical practice, to the design and implementation of treatment trials as well as our understanding of disease mechanisms. The aim of this study was to explore the levels of multiple plasma proteins in individuals from families with genetic frontotemporal dementia. METHODS: Blood samples from 693 participants in the GENetic Frontotemporal Dementia Initiative study were analysed using a multiplexed antibody array targeting 158 proteins. RESULTS: We found 13 elevated proteins in symptomatic mutation carriers, when comparing plasma levels from people diagnosed with genetic FTD to healthy non-mutation controls and 10 proteins that were elevated compared to presymptomatic mutation carriers. CONCLUSION: We identified plasma proteins with altered levels in symptomatic mutation carriers compared to non-carrier controls as well as to presymptomatic mutation carriers. Further investigations are needed to elucidate their potential as fluid biomarkers of the disease process.


Subject(s)
Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Mutation/genetics , C9orf72 Protein/genetics , Progranulins/genetics , tau Proteins/genetics , Biomarkers
13.
Front Neurol ; 14: 1204733, 2023.
Article in English | MEDLINE | ID: mdl-37396780

ABSTRACT

The idea that eye movements can reflect certain aspects of brain function and inform on the presence of neurodegeneration is not a new one. Indeed, a growing body of research has shown that several neurodegenerative disorders, such as Alzheimer's and Parkinson's Disease, present characteristic eye movement anomalies and that specific gaze and eye movement parameters correlate with disease severity. The use of detailed eye movement recordings in research and clinical settings, however, has been limited due to the expensive nature and limited scalability of the required equipment. Here we test a novel technology that can track and measure eye movement parameters using the embedded camera of a mobile tablet. We show that using this technology can replicate several well-known findings regarding oculomotor anomalies in Parkinson's disease (PD), and furthermore show that several parameters significantly correlate with disease severity as assessed with the MDS-UPDRS motor subscale. A logistic regression classifier was able to accurately distinguish PD patients from healthy controls on the basis of six eye movement parameters with a sensitivity of 0.93 and specificity of 0.86. This tablet-based tool has the potential to accelerate eye movement research via affordable and scalable eye-tracking and aid with the identification of disease status and monitoring of disease progression in clinical settings.

14.
J Neurol Sci ; 451: 120711, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37348248

ABSTRACT

OBJECTIVE: To identify whether language impairment exists presymptomatically in genetic frontotemporal dementia (FTD), and if so, the key differences between the main genetic mutation groups. METHODS: 682 participants from the international multicentre Genetic FTD Initiative (GENFI) study were recruited: 290 asymptomatic and 82 prodromal mutation carriers (with C9orf72, GRN, and MAPT mutations) as well as 310 mutation-negative controls. Language was assessed using items from the Progressive Aphasia Severity Scale, as well as the Boston Naming Test (BNT), modified Camel and Cactus Test (mCCT) and a category fluency task. Participants also underwent a 3 T volumetric T1-weighted MRI from which regional brain volumes within the language network were derived and compared between the groups. RESULTS: 3% of asymptomatic (4% C9orf72, 4% GRN, 2% MAPT) and 48% of prodromal (46% C9orf72, 42% GRN, 64% MAPT) mutation carriers had impairment in at least one language symptom compared with 13% of controls. In prodromal mutation carriers significantly impaired word retrieval was seen in all three genetic groups whilst significantly impaired grammar/syntax and decreased fluency was seen only in C9orf72 and GRN mutation carriers, and impaired articulation only in the C9orf72 group. Prodromal MAPT mutation carriers had significant impairment on the category fluency task and the BNT whilst prodromal C9orf72 mutation carriers were impaired on the category fluency task only. Atrophy in the dominant perisylvian language regions differed between groups, with earlier, more widespread volume loss in C9orf72, and later focal atrophy in the temporal lobe in MAPT mutation carriers. CONCLUSIONS: Language deficits exist in the prodromal but not asymptomatic stages of genetic FTD across all three genetic groups. Improved understanding of the language phenotype prior to phenoconversion to fully symptomatic FTD will help develop outcome measures for future presymptomatic trials.


Subject(s)
Frontotemporal Dementia , Language Development Disorders , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Progranulins/genetics , C9orf72 Protein/genetics , Atrophy , Mutation/genetics , tau Proteins/genetics
15.
Nat Med ; 29(6): 1437-1447, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37095250

ABSTRACT

Tau plays a key role in Alzheimer's disease (AD) pathophysiology, and accumulating evidence suggests that lowering tau may reduce this pathology. We sought to inhibit MAPT expression with a tau-targeting antisense oligonucleotide (MAPTRx) and reduce tau levels in patients with mild AD. A randomized, double-blind, placebo-controlled, multiple-ascending dose phase 1b trial evaluated the safety, pharmacokinetics and target engagement of MAPTRx. Four ascending dose cohorts were enrolled sequentially and randomized 3:1 to intrathecal bolus administrations of MAPTRx or placebo every 4 or 12 weeks during the 13-week treatment period, followed by a 23 week post-treatment period. The primary endpoint was safety. The secondary endpoint was MAPTRx pharmacokinetics in cerebrospinal fluid (CSF). The prespecified key exploratory outcome was CSF total-tau protein concentration. Forty-six patients enrolled in the trial, of whom 34 were randomized to MAPTRx and 12 to placebo. Adverse events were reported in 94% of MAPTRx-treated patients and 75% of placebo-treated patients; all were mild or moderate. No serious adverse events were reported in MAPTRx-treated patients. Dose-dependent reduction in the CSF total-tau concentration was observed with greater than 50% mean reduction from baseline at 24 weeks post-last dose in the 60 mg (four doses) and 115 mg (two doses) MAPTRx groups. Clinicaltrials.gov registration number: NCT03186989 .


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Oligonucleotides, Antisense/therapeutic use , Treatment Outcome , Double-Blind Method
16.
Hum Brain Mapp ; 44(7): 2684-2700, 2023 05.
Article in English | MEDLINE | ID: mdl-36895129

ABSTRACT

Recent studies have reported early cerebellar and subcortical impact in the disease progression of genetic frontotemporal dementia (FTD) due to microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72). However, the cerebello-subcortical circuitry in FTD has been understudied despite its essential role in cognition and behaviors related to FTD symptomatology. The present study aims to investigate the association between cerebellar and subcortical atrophy, and neuropsychiatric symptoms across genetic mutations. Our study included 983 participants from the Genetic Frontotemporal dementia Initiative including mutation carriers and noncarrier first-degree relatives of known symptomatic carriers. Voxel-wise analysis of the thalamus, striatum, globus pallidus, amygdala, and the cerebellum was performed, and partial least squares analyses (PLS) were used to link morphometry and behavior. In presymptomatic C9orf72 expansion carriers, thalamic atrophy was found compared to noncarriers, suggesting the importance of this structure in FTD prodromes. PLS analyses demonstrated that the cerebello-subcortical circuitry is related to neuropsychiatric symptoms, with significant overlap in brain/behavior patterns, but also specificity for each genetic mutation group. The largest differences were in the cerebellar atrophy (larger extent in C9orf72 expansion group) and more prominent amygdalar volume reduction in the MAPT group. Brain scores in the C9orf72 expansion carriers and MAPT carriers demonstrated covariation patterns concordant with atrophy patterns detectable up to 20 years before expected symptom onset. Overall, these results demonstrated the important role of the subcortical structures in genetic FTD symptom expression, particularly the cerebellum in C9orf72 and the amygdala in MAPT carriers.


Subject(s)
Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , C9orf72 Protein/genetics , Magnetic Resonance Imaging , Cerebellum , Atrophy
17.
Brain Commun ; 5(2): fcad061, 2023.
Article in English | MEDLINE | ID: mdl-36970046

ABSTRACT

Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers in the GENetic Frontotemporal dementia Initiative. Three hundred eighty-seven mutation carriers were included (160 GRN, 160 C9orf72, 67 MAPT), together with 240 non-carrier cognitively normal controls. Cortical and subcortical grey matter volumes were generated using automated parcellation methods on volumetric 3T T1-weighted MRI scans, while white matter characteristics were estimated using diffusion tensor imaging. Mutation carriers were divided into two disease stages based on their global CDR®+NACC-FTLD score: presymptomatic (0 or 0.5) and fully symptomatic (1 or greater). The w-scores in each grey matter volumes and white matter diffusion measures were computed to quantify the degree of abnormality compared to controls for each presymptomatic carrier, adjusting for their age, sex, total intracranial volume, and scanner type. Presymptomatic carriers were classified as 'normal' or 'abnormal' based on whether their grey matter volume and white matter diffusion measure w-scores were above or below the cut point corresponding to the 10th percentile of the controls. We then compared the change in disease severity between baseline and one year later in both the 'normal' and 'abnormal' groups within each genetic subtype, as measured by the CDR®+NACC-FTLD sum-of-boxes score and revised Cambridge Behavioural Inventory total score. Overall, presymptomatic carriers with normal regional w-scores at baseline did not progress clinically as much as those with abnormal regional w-scores. Having abnormal grey or white matter measures at baseline was associated with a statistically significant increase in the CDR®+NACC-FTLD of up to 4 points in C9orf72 expansion carriers, and 5 points in the GRN group as well as a statistically significant increase in the revised Cambridge Behavioural Inventory of up to 11 points in MAPT, 10 points in GRN, and 8 points in C9orf72 mutation carriers. Baseline regional brain abnormalities on MRI in presymptomatic mutation carriers are associated with different profiles of clinical progression over time. These results may be helpful to inform stratification of participants in future trials.

18.
Brain Commun ; 5(2): fcad036, 2023.
Article in English | MEDLINE | ID: mdl-36938528

ABSTRACT

Primary progressive aphasia is most commonly a sporadic disorder, but in some cases, it can be genetic. This study aimed to understand the clinical, cognitive and imaging phenotype of the genetic forms of primary progressive aphasia in comparison to the canonical nonfluent, semantic and logopenic subtypes seen in sporadic disease. Participants with genetic primary progressive aphasia were recruited from the international multicentre GENetic Frontotemporal dementia Initiative study and compared with healthy controls as well as a cohort of people with sporadic primary progressive aphasia. Symptoms were assessed using the GENetic Frontotemporal dementia Initiative language, behavioural, neuropsychiatric and motor scales. Participants also underwent a cognitive assessment and 3 T volumetric T1-weighted MRI. One C9orf72 (2%), 1 MAPT (6%) and 17 GRN (44%) symptomatic mutation carriers had a diagnosis of primary progressive aphasia. In the GRN cohort, 47% had a diagnosis of nonfluent variant primary progressive aphasia, and 53% had a primary progressive aphasia syndrome that did not fit diagnostic criteria for any of the three subtypes, called primary progressive aphasia-not otherwise specified here. The phenotype of the genetic nonfluent variant primary progressive aphasia group largely overlapped with that of sporadic nonfluent variant primary progressive aphasia, although the presence of an associated atypical parkinsonian syndrome was characteristic of sporadic and not genetic disease. The primary progressive aphasia -not otherwise specified group however was distinct from the sporadic subtypes with impaired grammar/syntax in the presence of relatively intact articulation, alongside other linguistic deficits. The pattern of atrophy seen on MRI in the genetic nonfluent variant primary progressive aphasia group overlapped with that of the sporadic nonfluent variant primary progressive aphasia cohort, although with more posterior cortical involvement, whilst the primary progressive aphasia-not otherwise specified group was strikingly asymmetrical with involvement particularly of the insula and dorsolateral prefrontal cortex but also atrophy of the orbitofrontal cortex and the medial temporal lobes. Whilst there are overlapping symptoms between genetic and sporadic primary progressive aphasia syndromes, there are also distinct features. Future iterations of the primary progressive aphasia consensus criteria should encompass such information with further research needed to understand the earliest features of these disorders, particularly during the prodromal period of genetic disease.

19.
Neurobiol Dis ; 179: 106068, 2023 04.
Article in English | MEDLINE | ID: mdl-36898614

ABSTRACT

BACKGROUND: Neurotransmitters deficits in Frontotemporal Dementia (FTD) are still poorly understood. Better knowledge of neurotransmitters impairment, especially in prodromal disease stages, might tailor symptomatic treatment approaches. METHODS: In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of Magnetic Resonance Imaging (MRI)-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic neurotransmission. We included 392 mutation carriers (157 GRN, 164 C9orf72, 71 MAPT), together with 276 non-carrier cognitively healthy controls (HC). We tested if the spatial patterns of grey matter volume (GMV) alterations in mutation carriers (relative to HC) are correlated with specific neurotransmitter systems in prodromal (CDR® plus NACC FTLD = 0.5) and in symptomatic (CDR® plus NACC FTLD≥1) FTD. RESULTS: In prodromal stages of C9orf72 disease, voxel-based brain changes were significantly associated with spatial distribution of dopamine and acetylcholine pathways; in prodromal MAPT disease with dopamine and serotonin pathways, while in prodromal GRN disease no significant findings were reported (p < 0.05, Family Wise Error corrected). In symptomatic FTD, a widespread involvement of dopamine, serotonin, glutamate and acetylcholine pathways across all genetic subtypes was found. Social cognition scores, loss of empathy and poor response to emotional cues were found to correlate with the strength of GMV colocalization of dopamine and serotonin pathways (all p < 0.01). CONCLUSIONS: This study, indirectly assessing neurotransmitter deficits in monogenic FTD, provides novel insight into disease mechanisms and might suggest potential therapeutic targets to counteract disease-related symptoms.


Subject(s)
Frontotemporal Dementia , Pick Disease of the Brain , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , C9orf72 Protein/genetics , Acetylcholine , Dopamine , Serotonin , Mutation , Magnetic Resonance Imaging/methods , tau Proteins/genetics
20.
J Neurol Sci ; 446: 120590, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36812822

ABSTRACT

OBJECTIVE: Sensitive cognitive markers are still needed for frontotemporal dementia (FTD). The Benson Complex Figure Test (BCFT) is an interesting candidate test, as it assesses visuospatial, visual memory, and executive abilities, allowing the detection of multiple mechanisms of cognitive impairment. To investigate differences in BCFT Copy, Recall and Recognition in presymptomatic and symptomatic FTD mutation carriers, and to explore its cognitive and neuroimaging correlates. METHOD: We included cross-sectional data from 332 presymptomatic and 136 symptomatic mutation carriers (GRN, MAPT or C9orf72 mutations), and 290 controls in the GENFI consortium. We examined gene-specific differences between mutation carriers (stratified by CDR® NACC-FTLD score) and controls using Quade's / Pearson Χ2 tests. We investigated associations with neuropsychological test scores and grey matter volume using partial correlations and multiple regression models respectively. RESULTS: No significant differences were found between groups at CDR® NACC-FTLD 0-0.5. Symptomatic GRN and C9orf72 mutation carriers had lower Copy scores at CDR® NACC-FTLD ≥2. All three groups had lower Recall scores at CDR® NACC-FTLD ≥2, with MAPT mutation carriers starting at CDR® NACC-FTLD ≥1. All three groups had lower Recognition scores at CDR® NACC FTLD ≥2. Performance correlated with tests for visuoconstruction, memory, and executive function. Copy scores correlated with frontal-subcortical grey matter atrophy, while Recall scores correlated with temporal lobe atrophy. CONCLUSIONS: In the symptomatic stage, the BCFT identifies differential mechanisms of cognitive impairment depending on the genetic mutation, corroborated by gene-specific cognitive and neuroimaging correlates. Our findings suggest that impaired performance on the BCFT occurs relatively late in the genetic FTD disease process. Therefore its potential as cognitive biomarker for upcoming clinical trials in presymptomatic to early-stage FTD is most likely limited.


Subject(s)
Frontotemporal Dementia , Humans , C9orf72 Protein/genetics , Cross-Sectional Studies , Neuropsychological Tests , Atrophy/complications , Mutation , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...